- cross-posted to:
- hackernews@derp.foo
- technews@radiation.party
- cross-posted to:
- hackernews@derp.foo
- technews@radiation.party
I think software engineering will spawn a new subdiscipline, specializing in applications of AI and wielding the emerging stack effectively, just as “site reliability engineer”, “devops engineer”, “data engineer” and “analytics engineer” emerged.
The emerging (and least cringe) version of this role seems to be: AI Engineer.
@AutoTLDR
TL;DR: (AI-generated 🤖)
The author of the text argues that the field of AI engineering is emerging and will become a new subdiscipline within software engineering. They propose that an AI engineering curriculum should focus on foundational concepts, such as large language models (LLMs), embeddings, RLHF (reinforcement learning from human feedback), and prompt engineering. They also suggest exploring specific models like GPT-4, Claude, Bard, LLaMa, LangChain, and Guidance, as well as tools like LlamaIndex and Pinecone/Weaviate. The author proposes several AI engineering projects, including building a document chatbot, a ChatGPT plugin, a basic agent, a smart assistant, and fine-tuning a language model. They emphasize the importance of building on existing models rather than training new ones, and recommend using closed-source products first and open-source as necessary. The author also encourages staying nimble and agile in working with evolving AI technologies. They seek feedback on their ideas and ask whether this concept could be turned into an actual course.
Under the Hood
gpt-3.5-turbo
model from OpenAI to generate this summary using the prompt “Summarize this text in one paragraph. Include all important points.
”How to Use AutoTLDR
good bot